38 #include <angles/angles.h>
40 #include <geometric_shapes/check_isometry.h>
50 , angular_distance_weight_(1.0)
51 , motion_model_(HOLONOMIC)
52 , min_translational_distance_(1e-5)
59 for (
int i = 0; i < 3; ++i)
70 variable_bounds_[0].min_position_ = -std::numeric_limits<double>::infinity();
72 variable_bounds_[1].min_position_ = -std::numeric_limits<double>::infinity();
87 double dx = other_bounds[0].max_position_ - other_bounds[0].min_position_;
88 double dy = other_bounds[1].max_position_ - other_bounds[1].min_position_;
89 return sqrt(dx * dx + dy * dy) + M_PI * angular_distance_weight_;
94 for (
unsigned int i = 0; i < 2; ++i)
97 if (bounds[i].min_position_ <= 0.0 && bounds[i].max_position_ >= 0.0)
103 values[i] = (bounds[i].min_position_ + bounds[i].max_position_) / 2.0;
110 const Bounds& bounds)
const
112 if (bounds[0].max_position_ >= std::numeric_limits<double>::infinity() ||
113 bounds[0].min_position_ <= -std::numeric_limits<double>::infinity())
119 values[0] = rng.uniformReal(bounds[0].min_position_, bounds[0].max_position_);
121 if (bounds[1].max_position_ >= std::numeric_limits<double>::infinity() ||
122 bounds[1].min_position_ <= -std::numeric_limits<double>::infinity())
128 values[1] = rng.uniformReal(bounds[1].min_position_, bounds[1].max_position_);
130 values[2] = rng.uniformReal(bounds[2].min_position_, bounds[2].max_position_);
134 const Bounds& bounds,
const double* near,
137 if (bounds[0].max_position_ >= std::numeric_limits<double>::infinity() ||
138 bounds[0].min_position_ <= -std::numeric_limits<double>::infinity())
144 values[0] = rng.uniformReal(std::max(bounds[0].min_position_, near[0] -
distance),
145 std::min(bounds[0].max_position_, near[0] +
distance));
147 if (bounds[1].max_position_ >= std::numeric_limits<double>::infinity() ||
148 bounds[1].min_position_ <= -std::numeric_limits<double>::infinity())
154 values[1] = rng.uniformReal(std::max(bounds[1].min_position_, near[1] -
distance),
155 std::min(bounds[1].max_position_, near[1] +
distance));
158 double da = angular_distance_weight_ *
distance;
162 values[2] = rng.uniformReal(near[2] - da, near[2] + da);
167 double& dx,
double& dy,
double& initial_turn,
double& drive_angle,
double& final_turn)
169 dx = to[0] - from[0];
170 dy = to[1] - from[1];
181 const double angle_straight_diff = std::hypot(dx, dy) > min_translational_distance ?
182 angles::shortest_angular_distance(from[2], std::atan2(dy, dx)) :
184 const double angle_backward_diff = angles::normalize_angle(angle_straight_diff - M_PI);
185 const double move_straight_cost =
186 std::abs(angle_straight_diff) + std::abs(angles::shortest_angular_distance(from[2] + angle_straight_diff, to[2]));
187 const double move_backward_cost =
188 std::abs(angle_backward_diff) + std::abs(angles::shortest_angular_distance(from[2] + angle_backward_diff, to[2]));
189 if (move_straight_cost <= move_backward_cost)
191 initial_turn = angle_straight_diff;
195 initial_turn = angle_backward_diff;
197 drive_angle = from[2] + initial_turn;
198 final_turn = angles::shortest_angular_distance(drive_angle, to[2]);
206 state[0] = from[0] + (to[0] - from[0]) * t;
207 state[1] = from[1] + (to[1] - from[1]) * t;
210 double diff = to[2] - from[2];
211 if (fabs(diff) <= M_PI)
213 state[2] = from[2] + diff * t;
219 diff = 2.0 * M_PI - diff;
223 diff = -2.0 * M_PI - diff;
225 state[2] = from[2] - diff * t;
229 state[2] -= 2.0 * M_PI;
231 else if (state[2] < -M_PI)
233 state[2] += 2.0 * M_PI;
239 double dx, dy, initial_turn, drive_angle, final_turn;
242 double initial_d = fabs(initial_turn) * angular_distance_weight_;
243 double drive_d = hypot(dx, dy);
244 double final_d = fabs(final_turn) * angular_distance_weight_;
246 double total_d = initial_d + drive_d + final_d;
248 double initial_frac = initial_d / total_d;
249 double drive_frac = drive_d / total_d;
250 double final_frac = final_d / total_d;
253 if (t <= initial_frac)
255 percent = t / initial_frac;
258 state[2] = from[2] + initial_turn * percent;
260 else if (t <= initial_frac + drive_frac)
262 percent = (t - initial_frac) / drive_frac;
263 state[0] = from[0] + dx * percent;
264 state[1] = from[1] + dy * percent;
265 state[2] = drive_angle;
269 percent = (t - initial_frac - drive_frac) / final_frac;
272 state[2] = drive_angle + final_turn * percent;
281 double dx = values1[0] - values2[0];
282 double dy = values1[1] - values2[1];
284 double d = fabs(values1[2] - values2[2]);
285 d = (d > M_PI) ? 2.0 * M_PI - d : d;
286 return sqrt(dx * dx + dy * dy) + angular_distance_weight_ * d;
290 double dx, dy, initial_turn, drive_angle, final_turn;
293 return hypot(dx, dy) + angular_distance_weight_ * (fabs(initial_turn) + fabs(final_turn));
301 for (
unsigned int i = 0; i < 3; ++i)
303 if (values[i] < bounds[i].min_position_ - margin || values[i] > bounds[i].max_position_ + margin)
311 double& v = values[2];
312 if (v >= -M_PI && v <= M_PI)
314 v = fmod(v, 2.0 * M_PI);
329 for (
unsigned int i = 0; i < 2; ++i)
331 if (values[i] < bounds[i].min_position_)
333 values[i] = bounds[i].min_position_;
336 else if (values[i] > bounds[i].max_position_)
338 values[i] = bounds[i].max_position_;
347 transf = Eigen::Isometry3d(Eigen::Translation3d(joint_values[0], joint_values[1], 0.0) *
348 Eigen::AngleAxisd(joint_values[2], Eigen::Vector3d::UnitZ()));
353 joint_values[0] = transf.translation().x();
354 joint_values[1] = transf.translation().y();
356 ASSERT_ISOMETRY(transf)
357 Eigen::Quaterniond q(transf.linear());
359 double s_squared = 1.0 - (q.w() * q.w());
360 if (s_squared < 10.0 * std::numeric_limits<double>::epsilon())
362 joint_values[2] = 0.0;
366 double s = 1.0 / sqrt(s_squared);
367 joint_values[2] = (acos(q.w()) * 2.0f) * (q.z() * s);
A joint from the robot. Models the transform that this joint applies in the kinematic chain....
VariableIndexMap variable_index_map_
Map from variable names to the corresponding index in variable_names_ (indexing makes sense within th...
JointType type_
The type of joint.
Bounds variable_bounds_
The bounds for each variable (low, high) in the same order as variable_names_.
std::vector< VariableBounds > Bounds
The datatype for the joint bounds.
const std::string & getName() const
Get the name of the joint.
void computeVariableBoundsMsg()
std::vector< std::string > local_variable_names_
The local names to use for the variables that make up this joint.
double getMaximumExtent() const
std::vector< std::string > variable_names_
The full names to use for the variables that make up this joint.
bool normalizeRotation(double *values) const
void interpolate(const double *from, const double *to, const double t, double *state) const override
Computes the state that lies at time t in [0, 1] on the segment that connects from state to to state....
void getVariableRandomPositionsNearBy(random_numbers::RandomNumberGenerator &rng, double *values, const Bounds &other_bounds, const double *near, const double distance) const override
Provide random values for the joint variables (within specified bounds). Enough memory is assumed to ...
void getVariableRandomPositions(random_numbers::RandomNumberGenerator &rng, double *values, const Bounds &other_bounds) const override
Provide random values for the joint variables (within specified bounds). Enough memory is assumed to ...
PlanarJointModel(const std::string &name, size_t joint_index, size_t first_variable_index)
void computeTransform(const double *joint_values, Eigen::Isometry3d &transf) const override
Given the joint values for a joint, compute the corresponding transform. The computed transform is gu...
bool satisfiesPositionBounds(const double *values, const Bounds &other_bounds, double margin) const override
Check if the set of position values for the variables of this joint are within bounds,...
void computeVariablePositions(const Eigen::Isometry3d &transf, double *joint_values) const override
Given the transform generated by joint, compute the corresponding joint values. Make sure the passed ...
unsigned int getStateSpaceDimension() const override
Get the dimension of the state space that corresponds to this joint.
bool enforcePositionBounds(double *values, const Bounds &other_bounds) const override
Force the specified values to be inside bounds and normalized. Quaternions are normalized,...
void getVariableDefaultPositions(double *values, const Bounds &other_bounds) const override
Provide a default value for the joint given the joint variable bounds. Most joints will use the defau...
double distance(const double *values1, const double *values2) const override
Compute the distance between two joint states of the same model (represented by the variable values)
void computeTurnDriveTurnGeometry(const double *from, const double *to, const double min_translational_distance, double &dx, double &dy, double &initial_turn, double &drive_angle, double &final_turn)
Compute the geometry to turn toward the target point, drive straight and then turn to target orientat...
Main namespace for MoveIt.
double distance(const urdf::Pose &transform)